No. Registro | 002714508 |
Tipo de material | TRABALHO DE EVENTO-ANAIS PERIODICO - INTERNACIONAL |
Cód. publicação | 10.1016/j.topol.2015.05.081 DOI |
Entrada Principal | Tkachenko, Mikhail G (*) INT México |
Título | Cellularity in subgroups of paratopological groups. |
Imprenta | Amsterdam, 2015. |
Descrição | p. 188–197. |
Idioma | Inglês |
Nota | Disponível em: <http://dx.doi.org/10.1016/j.topol.2015.05.081>. Acesso em: 28 fev. 2018 |
Assunto | GRUPOS TOPOLÓGICOS |
| TOPOLOGIA |
Assunto | cellularity |
| σ-compact |
| subsemigroup |
| precompact |
| topologically periodic |
Autor Secundário | Tomita, Artur Hideyuki https://orcid.org/0000-0001-9206-7103 |
Autor Secundário | Brazilian Conference on General Topology and Set Theory - STW (2013 São Sebastião, SP) |
Fonte | In: Topology and its Applications, Amsterdam, v. 192, p. 188–197, Sept. 2015, ISSN: 1879-3207 |
Localiz.Eletrônica |
"Clicar" sobre o botão para acesso ao texto |
Resumo/Outros | It is known that the cellularity of every σ-compact paratopological group is countable, without assuming any separation restrictions on the group. We prove that every subgroup of a σ-compact ’T IND. 1’ paratopological group has countable cellularity, but this conclusion fails for subgroups of σ-compact ’T IND. 0’ paratopological groups. For every infinite cardinal κ, we present a σ-compact subsemigroup H of a Hausdorff topological group such that the cellularity of H equals κ. We also prove that if S is a non-empty subsemigroup of a topologically periodic semitopological group G, then the closure of S is a subgroup of G. This implies, in particular, that the closure of every non-empty subsemigroup of a precompact topological group G is a subgroup of G and that every subsemigroup of G has countable cellularity. |
| |
Acervo Geral | Todos os itens |
Itens na Biblioteca | IME-Inst. Mat. e Estatística |
Unidade USP | IME -- INST DE MATEMÁTICA E ESTATÍSTICA |